THE IMPACT OF TRAINING HAND FUNCTION **Baycrest** WITH A NOVEL DEVICE IN A SAMPLE OF **CHRONIC STROKE PATIENTS**

INOVAIT . UNIVERSITY OF

McMaster Meltzer J.A., de Grosbois J, Dumais E, Marshall M, Wang G, Alibhai-Najarali S, Heleno M, Pan S, Arya A, Shao, J, Nelson A, Harris J.E., Johnson V.B.K.

Background

Hemiplegia is commonly observed post-stroke, with ~70% of Persons with stroke (PWS) presenting with hand and upper limb impairment.

The objective of this study was to explore the changes in motor function after a 15-hour training program using the MyHand[™] System.

Participants

Eleven participants who sustained a single stroke at least 6 months or greater prior to the beginning of the intervention were recruited from Greater Toronto Area, ON Canada.

All participants met the following inclusion criteria:

18-100 years old

-**(8**) _

- Single stroke ≥ 6 months prior to enrollment
- Lack of severe spasticity or contractures
- Chedoke McMaster Stroke Assessment \geq 3 for shoulder pain and hand function
- Mini-Mental State Exam score arm ≥24
- No botulinum toxin injections in the UL within 3 months of enrollment

Table 1: Demographic Information of the sample of 11 participants collected for this study. Age and years post presented as mean \pm SD in years. Two participant did not disclose their type of stroke as they were unable to recall. Participant's medical records were not obtained for this study. . Aff, affected; UL, upper limb; Hem, hemorrhagic; Isch, ischemic; ARAT, Action Research Arm Test.

Figure 1: Changes in Active finger flexion; represented through a composite score of flexion across the metacarpal phalangeal and interphalangeal joints. ** $p \le 0.01$

Figure 2: Changes in Active finger extension; represented through a composite score of extension across the metacarpal phalangeal and interphalangeal joints. * $p \le 0.05$, ** $p \le 0.01$

PRE POST

Change in Total Active Finger Extension

Using the Wilcoxon Signed Ranks test, a significant improvement in hand and upper limb activity was observed with the Action Research Arm Test (ARAT [p = 0.004]) and in finger and hand strength (Grip p=0.006, Tripod Pinch p=0.015 and Lateral Pinch p=0.006). Improvements were made in total active flexion across Digit 2 through 5 (Digit 2 *p*=0.006, Digit 3 *p*=0.008, Digit 4 *p*=0.004 and Digit 5 *p*=0.01). Improvements were made across all five digits in total active extension (Digit 1 *p*=0.004, Digit 2 *p*= 0.026, Digit 3 *p*=0.008, Digit 4 *p*=0.006, Digit 5 p=0.055). The mean difference in ARAT met the Minimal Clinically

Results

160

140 120

Methods

using the device. One is advised to quide the brain through the course while avoiding the brown blocks via flexion and extension of each finger.

Figure 6: How the hand is

Figure 5: MyHand™ System MK 2.45.

placed in the device. Each finger is placed in separate finger cups and adjusted accordingly.

Conclusion

- Statistically significant improvement in the hemiparetic hand and upper limb function was observed after 15 hours of treatment
- Adherence to the protocol was near perfect apart from one participant who was only able to complete 13 out of the 15 sessions
- No adverse events were observed throughout the study
- Future work in this area must focus on understanding the relationship between changes in active range of motion, finger/hand strength and functional changes, and the mechanisms that mediate this recovery.
- Larger sample sizes will help better with generalizing these results across the population. Further, this strategy will also help with understanding practical timelines for neurorehabilitation and dosage parameters.